PKM

Notion + AI: Your Personal Knowledge Base as AI Memory

February 18, 2026 ยท 7 min read

Notion is where you live. Your tasks, projects, notes, databases, wikis โ€” everything.

But when you talk to ChatGPT or Claude, they can’t see any of it. You’re stuck copy-pasting project details, task lists, and decisions into every conversation.

What if your AI could just… read your Notion workspace?

  • Ask “What’s on my plate this week?” โ†’ AI reads your task database
  • Ask “What did I decide about the tech stack?” โ†’ AI finds the decision log
  • Ask “Summarize my meeting notes from last week” โ†’ AI scans your meeting pages

This is possible. And easier than you think.

In this guide, I’ll show you:

  • How to connect Notion to AI (API setup)
  • Let AI search and read your databases
  • Auto-sync Notion content to AI memory
  • Real-world examples from my setup

Let’s make Notion your AI’s knowledge source.

Why Notion + AI Works

Notion has a robust API. Unlike some PKM tools, Notion was built for integrations.

Key advantages:

  1. Structured data โ€” Databases, properties, relations (better than plain Markdown)
  2. API-first โ€” Official REST API with good documentation
  3. Rich formatting โ€” Supports tables, embeds, toggles (more than plain text)
  4. Collaboration โ€” Team workspaces mean shared AI context
  5. No local install โ€” Cloud-based (works from anywhere)

Notion is a queryable knowledge graph, not just a note-taking app.

Setting Up Notion API (10 Minutes)

Step 1: Create a Notion Integration

  1. Go to https://www.notion.so/my-integrations
  2. Click "+ New integration"
  3. Name: “MyDeepBrain AI”
  4. Select workspace
  5. Copy the Integration Token (starts with secret_...)

Step 2: Grant Access to Pages

Notion integrations don’t auto-access all pages (security). You must explicitly share pages/databases.

  1. Open a Notion page you want AI to access
  2. Click "…" (top right) โ†’ Add connections
  3. Select your integration (“MyDeepBrain AI”)
  4. Repeat for each database/page you want AI to read

Step 3: Test API Access

curl -X POST https://api.notion.com/v1/search \
  -H "Authorization: Bearer YOUR_INTEGRATION_TOKEN" \
  -H "Notion-Version: 2022-06-28" \
  -H "Content-Type: application/json" \
  --data '{}'

You should see a JSON response with accessible pages.

Querying Notion from AI (Python Examples)

Search All Pages

import requests

NOTION_TOKEN = "secret_your_token_here"
NOTION_VERSION = "2022-06-28"

headers = {
    "Authorization": f"Bearer {NOTION_TOKEN}",
    "Notion-Version": NOTION_VERSION,
    "Content-Type": "application/json"
}

def search_notion(query):
    response = requests.post(
        "https://api.notion.com/v1/search",
        headers=headers,
        json={"query": query}
    )
    return response.json()

# Example: Find all pages mentioning "MyDeepBrain"
results = search_notion("MyDeepBrain")
for page in results["results"]:
    print(page["url"], page.get("properties", {}).get("title"))

Read a Specific Page

def get_page_content(page_id):
    # Get page properties
    page = requests.get(
        f"https://api.notion.com/v1/pages/{page_id}",
        headers=headers
    ).json()
    
    # Get page blocks (actual content)
    blocks = requests.get(
        f"https://api.notion.com/v1/blocks/{page_id}/children",
        headers=headers
    ).json()
    
    # Extract text from blocks
    content = []
    for block in blocks["results"]:
        block_type = block["type"]
        if block_type in ["paragraph", "heading_1", "heading_2", "heading_3"]:
            text = "".join([t["plain_text"] for t in block[block_type]["rich_text"]])
            content.append(text)
    
    return "\n".join(content)

# Example: Read a project page
content = get_page_content("PAGE_ID_HERE")
print(content)

Query a Database

def query_database(database_id, filter=None):
    response = requests.post(
        f"https://api.notion.com/v1/databases/{database_id}/query",
        headers=headers,
        json={"filter": filter} if filter else {}
    )
    return response.json()

# Example: Get all tasks assigned to "Pappu"
tasks_db_id = "your-database-id"
tasks = query_database(
    tasks_db_id,
    filter={
        "property": "Assigned to",
        "select": {"equals": "Pappu"}
    }
)

for task in tasks["results"]:
    title = task["properties"]["Name"]["title"][0]["plain_text"]
    status = task["properties"]["Status"]["status"]["name"]
    print(f"{title} โ€” {status}")

Real-World Use Cases

Use Case 1: Task Management Assistant

Setup: Connect your Notion Tasks database to AI.

Queries:

  • “What tasks are due this week?”
  • “What’s my highest priority item?”
  • “Mark ‘Write blog post’ as done”

Implementation:

def get_tasks_this_week():
    tasks = query_database(
        tasks_db_id,
        filter={
            "and": [
                {"property": "Due Date", "date": {"this_week": {}}},
                {"property": "Status", "status": {"does_not_equal": "Done"}}
            ]
        }
    )
    return [(t["properties"]["Name"]["title"][0]["plain_text"], 
             t["properties"]["Due Date"]["date"]["start"]) 
            for t in tasks["results"]]

# AI can now answer: "What's on my plate this week?"

Use Case 2: Decision Log Retrieval

Setup: Create a “Decisions” database in Notion with properties:

  • Title (text)
  • Date (date)
  • Category (select: Tech, Product, Business)
  • Context (rich text)

Queries:

  • “What did I decide about database choice?”
  • “Show me all tech decisions from Q1”

Implementation:

def search_decisions(keyword):
    decisions = query_database(decisions_db_id)
    results = []
    for decision in decisions["results"]:
        title = decision["properties"]["Title"]["title"][0]["plain_text"]
        if keyword.lower() in title.lower():
            date = decision["properties"]["Date"]["date"]["start"]
            results.append({"title": title, "date": date, "page_id": decision["id"]})
    return results

# AI retrieves context before answering questions

Setup: Store meeting notes in Notion with template:

  • Title: “Meeting: [Person] โ€” [Date]”
  • Attendees (multi-select)
  • Action Items (database relation)
  • Notes (rich text)

Queries:

  • “Summarize my meeting with Sarah last week”
  • “What action items came out of the Feb 15 design review?”

Implementation:

def get_meeting_notes(query):
    meetings = search_notion(query)
    for meeting in meetings["results"]:
        page_id = meeting["id"]
        content = get_page_content(page_id)
        return content  # Feed to AI for summarization

My Setup (Real Example from OpenClaw)

I use Notion for:

  • Task tracking (personal and work)
  • Project wiki (documentation, decisions)
  • AMC registry (annual maintenance contracts, renewal dates)

Integration:

OpenClaw agents can:

  1. Read my task database โ†’ “What’s my highest priority task?”
  2. Search project wiki โ†’ “What’s the deployment process for MyDeepBrain?”
  3. Check AMC renewals โ†’ “Which contracts expire this month?”

Code snippet:

# In OpenClaw agent's tool
def notion_query(query):
    # Search Notion workspace
    results = search_notion(query)
    
    # Get top 3 pages
    top_pages = results["results"][:3]
    
    # Extract content
    context = []
    for page in top_pages:
        content = get_page_content(page["id"])
        context.append(content)
    
    # Return to AI as context
    return "\n\n---\n\n".join(context)

Now when I ask OpenClaw, “What tasks need review?”, it:

  1. Queries my Notion Tasks DB
  2. Filters for Status = "Review"
  3. Returns the list

No manual copy-paste.

Advanced: Auto-Sync Notion to AI Memory

Instead of querying on-demand, you can index Notion content into a vector DB for semantic search.

Nightly Sync Script

def sync_notion_to_memory():
    # Get all recently updated pages
    pages = search_notion("")  # Empty query = all pages
    
    for page in pages["results"]:
        page_id = page["id"]
        content = get_page_content(page_id)
        
        # Generate embedding
        embedding = openai.Embedding.create(
            model="text-embedding-ada-002",
            input=content
        )["data"][0]["embedding"]
        
        # Store in vector DB
        qdrant_client.upsert(
            collection_name="notion_memory",
            points=[{
                "id": page_id,
                "vector": embedding,
                "payload": {"content": content, "url": page["url"]}
            }]
        )

# Run nightly via cron
if __name__ == "__main__":
    sync_notion_to_memory()

Now AI can semantically search your Notion workspace:

def semantic_search_notion(query):
    query_embedding = openai.Embedding.create(
        model="text-embedding-ada-002",
        input=query
    )["data"][0]["embedding"]
    
    results = qdrant_client.search(
        collection_name="notion_memory",
        query_vector=query_embedding,
        limit=5
    )
    return [r.payload for r in results]

# Example: "Find all notes about insurance policies"
notes = semantic_search_notion("insurance policy renewals")

Bi-Directional: AI Writes Back to Notion

So far, AI only reads Notion. What about writing?

Use Case: AI Creates Tasks

You tell AI: “Remind me to renew HDFC policy on April 10.”

AI creates a Notion task:

def create_notion_task(title, due_date, assigned_to="Pappu"):
    response = requests.post(
        "https://api.notion.com/v1/pages",
        headers=headers,
        json={
            "parent": {"database_id": tasks_db_id},
            "properties": {
                "Name": {"title": [{"text": {"content": title}}]},
                "Due Date": {"date": {"start": due_date}},
                "Assigned to": {"select": {"name": assigned_to}},
                "Status": {"status": {"name": "Not started"}}
            }
        }
    )
    return response.json()

# AI creates task
create_notion_task("Renew HDFC policy", "2026-04-10")

Now when you open Notion, the task is there.

Use Case: AI Logs Decisions

You tell AI: “Remember this decision: We’re using Cloudflare Pages for hosting.”

AI creates a decision log page:

def create_decision_log(title, context, category="Tech"):
    response = requests.post(
        "https://api.notion.com/v1/pages",
        headers=headers,
        json={
            "parent": {"database_id": decisions_db_id},
            "properties": {
                "Title": {"title": [{"text": {"content": title}}]},
                "Date": {"date": {"start": str(datetime.date.today())}},
                "Category": {"select": {"name": category}}
            },
            "children": [
                {
                    "object": "block",
                    "type": "paragraph",
                    "paragraph": {
                        "rich_text": [{"type": "text", "text": {"content": context}}]
                    }
                }
            ]
        }
    )
    return response.json()

# AI creates decision log
create_decision_log(
    title="Hosting platform: Cloudflare Pages",
    context="Chose Cloudflare Pages over Vercel for better edge performance and free tier."
)

Notion vs Obsidian for AI Integration

FeatureNotionObsidian
APIโœ… Official REST APIโš ๏ธ Community plugin (Local REST API)
Cloud syncโœ… Built-inโš ๏ธ Optional (Obsidian Sync)
Structured dataโœ… Databases, relationsโŒ Plain Markdown
Privacyโš ๏ธ Cloud-hostedโœ… Local-first
Collaborationโœ… Team workspacesโŒ Individual vaults
CostFree tier limitedFree (unlimited)

When to use Notion: Team knowledge, structured databases, cloud-first
When to use Obsidian: Personal PKM, privacy, local-first, graph-based thinking

Common Mistakes

Mistake 1: Not Sharing Pages with Integration

You create an integration but forget to grant access. API returns no results.

Fix: Explicitly share pages/databases via “Add connections.”

Mistake 2: Over-Indexing

You index every Notion page, including drafts and random notes.

Fix: Only index curated pages (Projects, Decisions, Tasks). Use tags or a specific database for “AI-accessible” content.

Mistake 3: No Rate Limiting

Notion API has rate limits (3 requests/second). Bulk queries can fail.

Fix: Add delays between requests:

import time
time.sleep(0.4)  # ~2.5 requests/sec

Tools & Libraries

Python:

  • notion-client โ€” Official Python SDK
  • notion2md โ€” Convert Notion pages to Markdown

JavaScript:

  • @notionhq/client โ€” Official Node.js SDK

AI Frameworks:

  • LangChain โ€” Has NotionDBLoader for indexing databases
  • LlamaIndex โ€” Notion connector for RAG

Key Takeaways

  1. Notion has a robust API โ€” easier to integrate than most PKM tools
  2. Query databases for structured data (tasks, decisions, projects)
  3. Semantic search via vector DB for large workspaces
  4. Bi-directional sync โ€” AI reads AND writes to Notion
  5. Grant explicit access โ€” integrations don’t auto-access pages
  6. Notion + AI = queryable second brain

Your Notion workspace is already structured knowledge. Connect it to your AI.


Want automatic Notion + AI sync? MyDeepBrain integrates with Notion workspaces out of the box. Join the waitlist.

Want early access to MyDeepBrain?

We're building a self-hosted memory platform for AI assistants. Join the waitlist to be notified when we launch.

Join Waitlist
Tags: Notion AI integration PKM personal knowledge management API